
Copyright Bender RBT Inc. 2013 1

Comparing Requirements Based
Testing Techniques

Richard Bender
Bender RBT Inc.

17 Cardinale Lane
Queensbury, NY 12804
Phone: 518-743-8755

rbender@BenderRBT.com
www.BenderRBT.com

Copyright Bender RBT Inc. 2013

Testing By Gut Feel

Totally dependent on who is doing the testing:
– How experienced they are at testing
– How experienced they are in the application
– How experienced they are in the technology that the

application runs on
– How they are feeling today

Even if all the tests run successfully, all you know is
that those tests run -- not that the system runs
successfully

2

Overview

• Define the criteria for comparison

• Evaluating the techniques
– Pair Wise / Equivalence class testing
– Path coverage through models
– Bender RBT Process with path

sensitizing via Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 3

Information Needed to
Design Test Cases

• Identify all of the variables
• Resolve aliases within/across processes
• Identify the possible states of the variables

– Both positive and negative states
• Know which variables are mandatory versus

optional
• Identify all of the preconditions

– Based on the physical structure of the data
– Based on the post conditions of prior functions

Copyright Bender RBT Inc. 2013 4

Information Needed to
Design Test Cases

• Understand the precedence relationships
• Understand concurrency
• Know which variables are observable
• Identify implicit information and get it

clarified
• Identify the transforms
• Identify the expected results

Copyright Bender RBT Inc. 2013 5

Copyright Bender RBT Inc. 2013 6

Test Case Design Challenges

1. Testing is comparing an expected result to
the observed result – implies clear
specifications

2. The number of potential tests exceeds the
number of molecules in the universe

3. Did you get the right answer for the right
reason

Copyright Bender RBT Inc. 2013

Test Case Design Challenge #1

• Testing is comparing an expected result to
an observed result – implies clear
specifications

• Given an initial system state and a set of
inputs can predict exactly what the outputs
will be

7

How Common Are Clear Specifications?

• Bender RBT Inc. founded in 1977

• Working with 100’s of clients and
many hundreds of projects we have
see just TWO testable specs going
into a new client.

Copyright Bender RBT Inc. 2013 8

Copyright Bender RBT Inc. 2013 9

Distribution of Bugs Distribution of Effort
to Fix Bugs

James
Martin

Requirements
82%

Design
13%

Other
4%Code

1%

Requirements
56% Design

27%

Other
10%Code

7%

Copyright Bender RBT Inc. 2013 10

Ambiguous Specifications
And Signoffs

A difference between Version I and

Version II exists only when mixed data

types are used, and then only when

operand lengths differ, and then only

sometimes.

Copyright Bender RBT Inc. 2013 11

Definition of Ambiguous

• If one person wrote it with one intent
and another person read it differently, it
is ambiguous.

Copyright Bender RBT Inc. 2013

Inputs to Test Design Process

Process cannot assume that good
requirements specifications exist

• Inputs:
– High-level requirements
– Somewhat “detailed” design documents written in

“technicaleze”
– Screen prototypes
– Supplemented by memos, e-mails, conversations,

rumors
– User stories in agile methodologies

Process must drive down the level of detail

12

Copyright Bender RBT Inc. 2013 13

Test Case Design Challenge #2

• Make the big number a small number:
– If you have just 6 variables and they have only two states

each and then factor in all of the unique orders then:

26! = 64! = 1.27 * 1089

Copyright Bender RBT Inc. 2013 14

Test Case Design Challenge #3

• Did you get the right answer for the
right reason

– Two or more defects may sometimes cancel each other out
– Something going right can hide something going wrong

Copyright Bender RBT Inc. 2013 15

Requirements Based Testing
Process

• VALIDATE That The Requirements Are:
– Correct
– Complete
– Unambiguous
– Logically Consistent

• Design Sufficient Tests To VERIFY That
The Design And Code Correctly
Implement The Requirements

Copyright 2013 Bender RBT Inc 16

Equivalence Class Testing
With Boundary Analysis

• Domain defined by range:

– Select value in the middle
– Select the highest valid value
– Select the lowest valid value
– Select something higher than the highest

valid value
– Select something lower than the lowest

valid value

Copyright 2013 Bender RBT Inc 17

Pair Wise Testing

• Steps:
– 1. Identify variables
– 2. Identify states for each variable
– 3. Identify constraints across

variables/states
– 4. Create pairs by combining all states of

a variable with all states of the other
variables

– 5. Merge feasible pairs into test cases,
ensuring compliance with constraints

Pair Wise Testing

• Identifies variables/states
• Weak on identifying aliases
• Precedence, concurrency not addressed
• Preconditions usually not addressed
• Expected results not identified
• Weak at clarifying specifications
• Logical consistency not validated
• Often generate illogical tests
• Does reduce the number of tests

Copyright Bender RBT Inc. 2013 18

Copyright 2013 Bender RBT Inc 19

Path Coverage Through Models

Copyright 2013 Bender RBT Inc 20

Path Coverage Through Models

Path Coverage Through Models

• Specifications must all be in the requirements
component of the tool

• They must all be machine readable/parsable
• Our experience is that the set of requirements

is in multiple formats in multiple documents
• The vast majority are not machine parsable

– MS Word, Excel, Visio

Copyright Bender RBT Inc. 2013 21

Path Coverage Through Models

• Does factor in precedence
• Does not factor in concurrency
• Usually does not include the expected results
• Does not factor in preconditions
• Some can identify intra-functional logical

inconsistencies
• Often generate illogical tests
• Does not aid in clarifying the specifications
• Does reduce the number of tests

Copyright Bender RBT Inc. 2013 22

Copyright Bender RBT Inc. 2013 23

Bender RBT Process

Quality filters
1. Validate requirements (WHAT) against objectives (WHY)
2. Apply scenarios against requirements / use cases
3. Perform initial ambiguity review
4. Perform domain expert reviews
5. Create cause-effect graph
6. Logical consistency check by BenderRBT
7. Validate test cases with specification writer
8. Validate test cases with users/domain experts
9. Validate test cases with developers
10. Verify design via walking test cases through design
11. Verify code via walking test cases through code
12. Verify code via executing test cases against code

Copyright Bender RBT Inc. 2013 24

Ambiguity Review Checklist

• Dangling else
• Ambiguity of reference
• Scope of action
• Omissions

– Causes without effects
– Missing effects
– Effects without causes
– Complete omissions
– Missing causes

• Ambiguous logical operators
– Or, And, Nor, Nand
– Implicit connectors
– Compound operators

• Negation
– Scope of negation
– Unnecessary negation
– Double negation

• Ambiguous statements
– Verbs, adverbs, adjectives
– Variables, unnecessary aliases

• Random organization
– Mixed causes and effects
– Random case sequence

• Built-in assumptions
– Functional/environmental

knowledge
• Ambiguous precedence

relationships
• Implicit cases
• Etc.
• I.E. versus E.G.
• Temporal ambiguity
• Boundary ambiguity

Copyright Bender RBT Inc. 2013 25

Dangling Else

Must be, will be, is one of, should be, could
be.

Example:

“The code must be either A, B, or C.”

Else? An error condition?

Copyright Bender RBT Inc. 2013 26

Benefits from
Ambiguity Reviews

• Timely feedback reduces issue resolution
time.

• Explicit feedback leads to defect
avoidance – 95% reduction.

• Critical to outsourcing.

If something is ambiguous in the specs it will
nearly always result in a defect(s) in the code

Copyright Bender RBT Inc. 2013 27

Cause-Effect Graphing

1. If A or B, then C.
2. If D or E, then F.
3. If C and F, then G.

• Resolve Aliases
• Clarify Precedence

Rules
• Clarifies Implicit

Information

A
C

B

F

D
G

E

Or

And

Or

Cause-Effect Graphing

• Independent of the format of the
requirements

• Can support agile projects
• Identifies variables, states, aliases
• Clarifies precedence, concurrency
• Factors in preconditions
• Identifies expected results
• Clarifies implicit results

Copyright Bender RBT Inc. 2013 28

Clarifying Requirements Via
Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 29

Clarifying Requirements Via
Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 30

Clarifying Requirements Via
Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 31

Clarifying Requirements Via
Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 32

Clarifying Requirements Via
Cause-Effect Graphing

Copyright Bender RBT Inc. 2013 33

Copyright Bender RBT Inc. 2013 34

Cause-Effect Graphing

Assume A is stuck at FALSE and B is stuck at TRUE.
The machine would interpret:

Or

A

B

C

D
1.
2.
3.
4.

A
—
—
—

—
B
—
—

—
—
C
—

D
D
D
—

1.
2.
3.
4.

A
—
—
—

—
B
—
—

—
—
C
—

as
as
as
as

—
—
—
—

B
B
B
B

—
—
C
—

D
D
D
DX

=T
=F

Copyright Bender RBT Inc. 2013 35

Cause-Effect Graphing

Or

A

B

C

D
1.
2.
3.
4.

A
—
—
—

—
B
—
—

—
—
C
—

D
D
D
—

Assume A is still stuck at FALSE.
The machine would interpret:

1.
2.
3.
4.

A
—
—
—

—
B
—
—

—
—
C
—

as
as
as
as

—
—
—
—

B
—

—
—

—
—
C
—

—

—

D
D

X

Fix the bug found by #4 and #1 fails.

Must rerun ALL tests until ALL pass!

=F

RBT24160

Copyright Bender RBT Inc. 2013 36RBT24261

Cause-Effect Graphing
Observable Events and Path Sensitizing

• Assume C and F are not
observable events.

• Assume A is stuck at
FALSE.

• Enter as a test case A(T),
B(T), D(T), E(T).

• Results should be C(T),
F(T) and G(T).

T

T

T
T

T

T

T

Copyright Bender RBT Inc. 2013 37

Cause-Effect Graphing
Observable Events and Path Sensitizing

• Results should be C(T), F(T) and
G(T).

• A, stuck at FALSE, causes C to be (F).

• The error is not detected since
G is still (T) due to F(T).

• Therefore, no test of C can be
combined with tests of F which would
result in F(T).

T

T

T
T

T
T

T =F
FX

Copyright Bender RBT Inc. 2013 38

Cause-Effect Graphing
Observable Events and Path Sensitizing

Challenge:
• Design a set of test cases, factoring in:

– The relations between the variables
– Constraints between the data attributes
– Functional variations required to test
– Node observability

… such that if any logical defect or any
combination of defects are present, at least
one test case will fail at an observable point.

Cause-Effect Graphing

• Highly optimized test design since based
on the hardware path sensitizing algorithms

• Generally results in test libraries reduced
by a factor of four for equivalent coverage

• Results in significantly reduced effort to:
– Build the executable tests
– Run the tests
– Verify the test results
– Maintain the test libraries

Copyright Bender RBT Inc. 2013 39

Copyright Bender RBT Inc. 2013 40

Test Statistics For A Typical Screen

For n = 37 Primary causes, then
2^n = [a little more than] 137,438,953,472

THEORETICAL Maximum Number of Test Cases.

RBT generated 22 Test Cases, which yields a
6,247,225,157 to 1 Test Case Compression

Ratio.

RBT Elapsed Time: 00:00:01 (hh:mm:ss)

Copyright Bender RBT Inc. 2013 41

Test Statistics

Thought Experiment
– Put 137,438,953,450 red balls in a giant barrel.
– Add 22 green balls to the barrel and mix well.
– Turn out the lights.
– Pull out 22 balls.

What is the probability that you have selected the 22 green ones?
– Pull out 1,000 balls

What is the probability that you have the 22 green ones now?
– Pull out 1,000,000 balls

What is the probability that you have the 22 green ones now?

This is what “GUT FEEL” testing really is.

Copyright Bender RBT Inc. 2013 42

Test Statistics

Thought Experiment
– Put 137,438,953,450 red balls in a giant barrel.
– Add 22 green balls to the barrel and mix well.
– Turn out the lights.
– Pull out 22 balls.

What is the probability that you have selected the 22 green ones?
– Pull out 1,000 balls 7.3X10-180

What is the probability that you have the 22 green ones now?
– Pull out 1,000,000 balls 9.2X10-114

What is the probability that you have the 22 green ones now?

This is what “GUT FEEL” testing really is.

Copyright Bender RBT Inc. 2013 43

If the person is under 18, and plays tennis,
then send them a tennis club brochure.

If the person is 18 or older, or has a motorcycle license,
then send them a motorcycle club brochure.

If the person was sent both brochures, then put them
on the “A” mailing list.

C-E Graphing Validates the
Logical Consistency

Under 18
Send Tennis
Brochure

Send
Motorcycle Brochure

Place on “ A”
Mailing List

Plays Tennis
And

E
And

Or
Over 18

Has License

You must be over 18 to have a motorcycle license.
[Has License(T) requires Over 18(T)]

Copyright Bender RBT Inc. 2013 44

C-E Graphing Validates the
Logical Consistency

Functional Variations for:
A_list:-Tennis-brochure AND Motorcycle-brochure.
<INFEASIBLE> T01--Due to constraint(s) ACROSS

relationships (or faulty logic)
7. If Tennis-brochure and Motorcycle-brochure

then A_list.

8. If not Tennis-brochure
(and Motorcycle-brochure)

then not A_list.

9. If not Motorcycle-brochure
(and Tennis-brochure)

then not A_list.

T11--Possible graph logic error. TRUE state of A_list
always Infeasible

T12--Note: TRUE state of A_list not covered in any test
case

Copyright Bender RBT Inc. 2013 45

Tests From C-E Graphing are Functionally
Equivalent to the Rules in the Specs

Original Requirement

Dental Insurance Claims Payment Specification
Dentists with membership codes of 2, 3, or 9 are member

dentists. For claims referencing a non-member dentist or for
procedures not within the referenced dentist’s record, a system
table is used to calculate the amount paid. Otherwise, the amount
submitted is paid. However, an override code of 1 or 9 allows the
amount submitted to be paid for non-member dentists or for
procedures not within the referenced dentist’s record. When an
override code is used an entry is made on the paid claims report.

Copyright Bender RBT Inc. 2013 46

C-E Graph Generated Tests
(not the full set)

Cause States:
The Dentist is a Member Dentist
The procedure was not
preauthorized
An override code was entered

Effect States:
Override the partial payment
Make an entry on the paid claims
report

Cause States:
The Dentist is a Member Dentist
The procedure was preauthorized

Effect States:
Pay the full amount of the claim
Do not make an entry on the paid
claims report

TEST 1 TEST 2

Test Case Reviews

• Moves User Acceptance Test up before
coding starts

• 90% of all tests needed defined before
start of coding

Copyright Bender RBT Inc. 2013 47

Eliminate Requirements Defects

Percentage of Requirements Based Defects Found
From Unit Test Through Deployment

56%

2%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Typ. Project RBT Project

Copyright Bender RBT Inc. 2013
48

Test Design Summary

Validate Requirements Cause-Effect
Graphing

Path
Coverage

Pair-
Wise

Flexible Requirements Format X X
Ambiguity Eliminated X * *
Implicit Requirements Clarified X
Sequencing Clarified X X
Concurrency Clarified X
Logical Relationships Clarified X x
Logical Consistency Verified X x

Copyright Bender RBT Inc. 2013 49

Test Design Summary

Test Design Cause-Effect
Graphing

Path
Coverage

Pair-
Wise

Expected Results Included X x
Boundary Constraints Factored In X x
Observability of Defects X
Reduce Number of Tests X x x
Test Coverage 100% <50% <50%

Can Support Agile Projects X X

Copyright Bender RBT Inc. 2013 50

